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Abstract: Parkinson’s disease (PD) is an incurable neurodegenerative disease of high prevalence,
characterized by the prominent death of dopaminergic neurons in the substantia nigra pars compacta,
which produces dopamine deficiency, leading to classic motor symptoms. Although PD has tradition-
ally been considered as a neuronal cell autonomous pathology, in which the damage of vulnerable
neurons is responsible for the disease, growing evidence strongly suggests that astrocytes might have
an active role in the neurodegeneration observed. In the present review, we discuss several studies
evidencing astrocyte implications in PD, highlighting the consequences of both the loss of normal
homeostatic functions and the gain in toxic functions for the wellbeing of dopaminergic neurons. The
revised information provides significant evidence that allows astrocytes to be positioned as crucial
players in PD etiology, a factor that needs to be taken into account when considering therapeutic
targets for the treatment of the disease.
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1. An Introduction to Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disease, char-
acterized by motor symptoms that include bradykinesia, muscular rigidity, and resting
tremor [1,2]. PD also includes non-motor symptoms, many of them preceding the motor
impairment stage for almost a decade, with clinicopathological correlations that are still
poorly understood. Here we will focus on the loss of dopaminergic neurons in the sub-
stantia nigra pars compacta (SNpc) that is responsible for the motor symptoms and the
presence of intraneuronal protein aggregates called Lewy bodies, the hallmarks of PD [1,2].

Aging is the main risk factor for the development of PD, affecting up to 2% of adults
over 65 years old, with an incidence increasing 5- to 10-fold between 60 and 90 years of
age [3]. A study of the Global Burden of Disease has pointed to neurological disorders as
the leading cause of disability between 1990 and 2015, with PD being the fastest growing
among them (GBD, 2015). Presently, there is no cure or disease-modifying treatments for
PD. Medical management of PD patients is predominantly focused on the restitution of
dopamine (DA) levels in the caudate putamen, with levodopa administration being the
gold standard treatment [3].

The etiology of PD is poorly understood. Genetic mutations in several genes that result
in the development of familiar PD have been identified, but they account for only 5–10%
of total cases. Most PD cases are sporadic, and despite decades of intense investigation,
the causes of the disease remain mostly unknown [1]. Environmental factors (including
some pesticides such as paraquat and rotenone), solvents, metals, and other by-products
of industrialization may contribute to the development of PD [4]. On the other hand,
a number of lifestyle factors have been associated with reduced risk of developing the
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disease, including tobacco smoking and coffee intake [5]. It is likely that, in most cases, a
complex interplay among predisposing genetic factors, lifestyle habits, and environmental
lifetime exposures determine the appearance of the disease.

Studies on animal models and postmortem tissue from PD patients have helped to
identify multiple pathways and mechanisms that contribute to the degenerative process
of the dopaminergic neurons. Altered proteostasis and, in particular, a dysfunction in
α-synuclein (α-syn) degradation, is thought to play a key role in PD. Misfolded and
aggregated α-syn is the principal component of Lewy bodies, and point mutations in the α-
syn gene or multiplications of the wild type gene cause familiar forms of PD. Furthermore,
polymorphisms in the α-syn gene are associated with an increased risk of developing PD [6].
Other PD-linked genes suggesting a dysfunction of the cellular clearance pathways include
LRRK2 (leucine-rich repeat serine/threonine protein kinase 2) and ATP132A (ATPase 13A2),
which code for proteins related to autophagy and lysosomal metabolism, respectively [7].
In accordance, DA neurons derived from induced pluripotent stem cells from PD patients
with LRRK2 mutations showed deficient autophagy mechanisms that might be associated
with the accumulation of α-syn [8].

Mitochondrial dysfunction, energetic failure, and oxidative stress (OS) have also been
implicated in the pathogenesis of PD. SNpc neurons in PD patients’ present deficits in
mitochondrial complex I and mitochondrial dysfunction [9]. Exposure to mitochondrial
toxins such as paraquat and rotenone correlates with increased risk of PD [4]. In fact,
the inhibitors of mitochondrial complex I, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) and rotenone, are widely used to create PD animal models because they induce
the degeneration of the dopaminergic neurons of the SNpc [10]. Mutations linked to
PINK1 (PTEN-induced putative kinase 1) and parkin genes that codify proteins involved
in mitochondrial quality control, are associated with PD [7]. In addition, reactive oxidative
species (ROS) production linked to dysfunctional mitochondria can cause widespread
oxidative damage to cellular components. In this regard, mutations in the PARK7 gene
involving loss of function in the mitochondrial antioxidant DJ-1 protein are related to
increased sensitivity to OS and have been proposed as causative of PD [11,12].

Dopaminergic neurons in the SNpc are especially prone to suffer OS. In fact, a high
baseline level of OS in the aging SNpc has been observed compared to other neuronal types,
including dopaminergic neurons [13]. Large complex unmyelinated axonal arbors together
with autonomous pacemaker activity driven by Ca++ channels that require substantial
amounts of ATP, are aspects involved in the particular vulnerability of DA neurons to
OS [14,15]. In addition, dopaminergic neurons are constantly dealing with pro-oxidant
products of DA metabolism. Deamination of free DA by monoamine oxidase (MAO)
generates H2O2 that can further participate in the Fenton reaction, generating the highly
reactive radical OH, a process that is favored by elevated local levels of iron [16–18]. DA is
also prone to autoxidation, producing dopamine o-quinone, an unstable molecule that can
easily react to form more dangerous molecules, such as aminochrome, that generate ROS,
worsening the mitochondrial dysfunction, disturbing the proteasome, and exacerbating
endoplasmic reticulum (ER) stress, which, in turn, will induce inflammation and the
formation of α-syn oligomers [17]. In accordance, studies on postmortem brains from PD
patients indicate increased OS markers and decreased antioxidants defenses [13].

Chronic neuroinflammation is proposed to play a crucial role in PD because of its
essential contribution to α-syn aggregation and the neurodegenerative process [19]. Studies
on the postmortem tissue of PD patients evidenced markers for glia activation, leucocyte
infiltration, and elevated proinflammatory cytokine levels in the SNpc [20–24]. In turn, glial
reactivity amplifies and sustains neuroinflammation in a positive feedback loop, where
neuroinflammation exacerbates glial proliferation, likely favoring the emergence of highly
neurotoxic phenotypes that will release inflammation effectors contributing to perpetuate
chronic neuroinflammation and further neurodegeneration [25–28].
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2. PD as a Non-Neuronal Cell Autonomous Disease

PD has traditionally been considered as a neuronal cell autonomous pathology in which
the sole damage of SNpc dopaminergic neurons suffices to produce the characteristic motor
symptoms of the disease. However, growing evidence shows that the damage to key partner
cells, as well as to vulnerable neurons, may account for the selective susceptibility of SNpc
dopaminergic neurons [29–32]. Therefore, non-neuronal cell autonomous mechanisms seem to
be involved in PD, microglial cells and astrocytes being the most remarkable players.

Gliosis in SN exhibits particular features since this region is remarkably richer in mi-
croglial cells compared to other midbrain areas, but is poor in glial fibrillary acidic protein
(GFAP) positive astrocytes [24,33]. In the SN of PD patients, exacerbated microgliosis is
described, associated with increased ROS and reactive nitrogen species, inducible nitric
oxide synthase (iNOS) expression, and the release of proinflammatory prostaglandins,
cytokines, and other inflammatory mediators [34]. Tumor necrosis factor-α (TNF-α), in-
terleukin (IL)-1β), IL6, and interferon gamma (IFN-γ), are increased in both SNpc glial
cells and in cerebrospinal fluid of PD patients [21,32,35]. These cytokines may amplify and
propagate glial reactivity, and consequently, injury to neurons, among other mechanisms,
through nuclear factor kappa B (NFkB) activation of the apoptotic machinery [32,34,36].
In fact, this pathway is increased in dopaminergic neurons of PD patients, indicating a
role of microglial reactivity during very early PD onset and progression [21]. On the other
hand, the involvement of astrocytes in PD initiation is much less studied, although growing
evidence suggests a clear but highly complex participation that warrants profound analysis.

3. Interplay between Astrocytes and Dopaminergic Neurons under Physiological
Conditions

Astrocytes sustain brain homeostasis and provide for CNS defense [28]. They par-
ticipate in the energetic support to neurons, blood flow regulation, CNS development,
synaptogenesis, neurogenesis, synaptic maintenance, as well as in ion and neurotransmit-
ter homeostasis [25,27,28]. Astrocyte roles in brain homeostasis include the exchange of
energetic substrates between blood and the brain through different transporters for glucose,
lactate/pyruvate, and fatty acids, which provide energetic support to neurons and sustain
cellular antioxidant systems [26,28,37]. Astrocyte end-feet, which cover ~95% of the brain
capillary surface, are important players in the blood–brain barrier (BBB) and neurovascular
unit functions and properties [26,28]. Moreover, they metabolize glucose to lactate, which is
later available to neurons [38,39], and it is consensually accepted that this lactate system is
linked to glutamate release during neuronal activity. Astrocytes are in charge of glutamate
uptake to efficiently end the neurotransmission, which is associated with an increase in
Na+/K+ ATPase activation [25,40]. This causes a significant decrease in ATP levels, raising
the rate of glycolysis to produce lactate that could be used by neurons. In addition, the
glutamate/glutamine cycle will permit the supply of antioxidants, such as glutathione
(GSH) and ascorbate, to neurons, and collaborates with ammonia (NH3) detoxification in
order to synthesize glutamine inside astrocytes [41].

Astrocytes and dopaminergic neurons interact in several ways (Figure 1). For example,
astrocytes substantially contribute to CNS monoamine metabolism by taking up extrasy-
naptic DA through the Na+-dependent DA transporter (DAT) [28], which is metabolized by
the monoamine oxidase B (MAOB), an enzyme preferentially expressed in astrocytes [42,43].
Astrocytes also express several functional dopamine receptors (DAR), and DA, acting on
both D1R and D2R, contributes to induce Ca++ transients in astrocytes [44–46] and regu-
lates the astrocytic NAD+/NADH redox state [47]. Upon DAR activation, these cells also
express and release neurotrophic factors such as the glial-cell-line-derived neurotrophic
factor (GDNF) [48–50], which is critical for the development and survival of dopaminergic
neurons [51]. Fibroblast growth factors (FGF) are other neurotrophins that are site-specific
and released by astrocytes. For instance, FGF20 is synthesized at high levels by astrocytes
from the SN reticulata but not from the SNpc, and may act on FGF receptors of healthy
SNpc dopaminergic neurons [52].
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DARs and DA uptake mediated by specific transporters and further oxidation by MAOB; (H) nor-
mal digestion of neuronal waste products; (I) S100β participation in cytoskeleton stability and cal-
cium signaling; (J) gap junctions that contribute to syncytium formation and coupling, allowing the 
exchange of small molecules and cell–cell communication. Abbreviations: AQP4, aquaporin; DA, 
dopamine; DAR, dopamine receptor; DAT, dopamine transporter; ER, endoplasmic reticulum, Gln, 
glutamine; GLU, glutamate; GLAST, glutamate–aspartate transporter; GLT1, glutamate transporter 
1; MAOB, monoamine oxidase B; NH3, ammonia; RAGE, receptor for advanced glycosylation end 
products. 

As stated previously, astrocytes provide neurons with the main cellular antioxidant 
defenses, such as ascorbic acid, metallothioneins (MT)-1 and -2, and cysteine and glu-
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produced by DA oxidation [53–58]. Interestingly, DA taken up by DAT in astrocytes acti-
vates the antioxidant transcription factor Nrf-2, resulting in the upregulation of the ex-
pression of several antioxidant proteins, such as MT-1 and -2 and GSH-related enzymes, 
indicating an interplay among both cell types associated with OS control [56,59,60]. More-
over, the protein DJ-1, which is well recognized as an OS sensor, is highly expressed in 
astrocytes, and exhibits neuroprotective properties, as suggested by DJ-1 mutations that 
cause PD and astrocyte PARK7 knockout or -down that results in decreased neuroprotec-
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Figure 1. Normal functions of astrocytes. (A) Modulation of synaptic activity via GLU transport
from the synaptic cleft into the cell; (B) synthesis of Gln and GSH precursors as well as NH3

detoxification, all linked to GLU uptake; (C) replenishment of neuronal GLU via the GLU–Gln cycle;
(D) release of neurotrophins, energetic intermediates, and antioxidants to provide anaplerotic support
to neurons; (E) storage of the main energetic source; (F) transport of glucose from the vasculature,
regulation of blood flow by astrocyte end-feet apposing blood vessels, and through the release of
vasoactive substances and cell volume regulation mediated by aquaporins; (G) DA activation of
DARs and DA uptake mediated by specific transporters and further oxidation by MAOB; (H) normal
digestion of neuronal waste products; (I) S100β participation in cytoskeleton stability and calcium
signaling; (J) gap junctions that contribute to syncytium formation and coupling, allowing the exchange
of small molecules and cell–cell communication. Abbreviations: AQP4, aquaporin; DA, dopamine; DAR,
dopamine receptor; DAT, dopamine transporter; ER, endoplasmic reticulum, Gln, glutamine; GLU,
glutamate; GLAST, glutamate–aspartate transporter; GLT1, glutamate transporter 1; MAOB, monoamine
oxidase B; NH3, ammonia; RAGE, receptor for advanced glycosylation end products.

As stated previously, astrocytes provide neurons with the main cellular antioxidant
defenses, such as ascorbic acid, metallothioneins (MT)-1 and -2, and cysteine and glutamyl-
cysteine, to synthesize GSH that acts against ROS and pro-oxidant DA quinones produced
by DA oxidation [53–58]. Interestingly, DA taken up by DAT in astrocytes activates the
antioxidant transcription factor Nrf-2, resulting in the upregulation of the expression of
several antioxidant proteins, such as MT-1 and -2 and GSH-related enzymes, indicating
an interplay among both cell types associated with OS control [56,59,60]. Moreover, the
protein DJ-1, which is well recognized as an OS sensor, is highly expressed in astrocytes,
and exhibits neuroprotective properties, as suggested by DJ-1 mutations that cause PD
and astrocyte PARK7 knockout or -down that results in decreased neuroprotection in PD
cellular models [11,61,62]. Astrocytes also contribute to inhibit aminochrome damage
to dopaminergic cells by secreting the aminochrome-metabolizing enzyme, controlling
neuroinflammatory cascades and the formation of α-syn oligomers [17,63].

In addition, dopaminergic signaling mediated by astrocytic D2R suppresses neuroin-
flammation by inhibiting the activation of the NLRP3 inflammasome and subsequent
cytokine production [64–66]. Protective astrocyte actions on SNpc dopaminergic neurons
also include the uptake and further degradation of secreted neuronal α-syn and other waste
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products, such as damaged mitochondria, DAT, and tyrosine hydroxylase (TH), [64–69].
In addition, it has been reported that iPSC-derived astrocytes could act as mitochondrial
donors to injured dopaminergic neurons, preventing neurodegeneration [70].

Thus, astrocytes actively contribute to the proper function and survival of dopaminer-
gic neurons in the SNpc through several mechanisms. This also implies that alterations in
astrocyte physiology might directly affect dopaminergic neurons, since under pathological
conditions, astrocytes fail to maintain homeostatic functions, but also gain functions that
might be detrimental to neurons (Figure 2).
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Figure 2. Potential astrocyte dysfunction in Parkinson’s disease. (A) Impairment of GLU trans-
porters and increased synaptic GLU and excitotoxicity; (B) defective synthesis of Gln and GSH
precursors, impaired NH3 detoxification, and altered cell volume; (C) diminished Gln supply; (D)
disturbed anaplerotic support to neurons coexisting with increased release of deleterious soluble
mediators (inflammatory cytokines and chemokines); (E) decreased pool of energetic sources; (F)
altered glucose transport from the vasculature, decreased coverage of brain capillaries, and release of
vasoactive substances, and AQP4 mislocalization resulting in cell volume deregulation; (G) MAOB
elevation and increased DA degradation, promoting OS; (H) α-syn intracellular aggregates due to
increased uptake and overtaken functions of the proteasome and autophagic pathways; (I) α-syn
binding to TLR4 reinforcing inflammasome activation (D), S100β increased expression and extracel-
lular release, disturbing cytoskeleton stability and cell proliferation, and increasing Ca++ signaling
and activation of RAGE–NFkB-dependent pathways; (J) increased intracellular Ca++ eliciting mito-
chondrial dysfunction and ER stress that will worsen anaplerotic support; (K) increased intracellular
protein aggregates could increase the amount of ATP released through hemichannels and via gap
junctions, propagating altered calcium signaling and disturbing the glial communication; (L) en-
hanced hemichannel formation could increase the deleterious signaling to the extracellular medium.
All described astrocyte alterations strongly affect the wellbeing of dopaminergic neurons that, per se,
exhibit special vulnerability to oxidative and cellular stresses. Abbreviations: AQP4, aquaporin; DA,
dopamine; DAR, dopamine receptor; DAT, dopamine transporter; Gln, glutamine; Glu, glutamate;
GLAST, glutamate–aspartate transporter; GLT1, glutamate transporter 1; MAOB, monoamine oxidase B;
NH3, ammonia; RAGE, receptor for advanced glycosylation end products; TLR4, Toll-like receptor 4.
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4. Evidence for Astrocyte Roles in PD as a Non-Neuronal Cell Autonomous Disease

Under damaging conditions, astrocytic responses may include changes in morphology,
gene expression, and/or functions [27,37], which is termed astrocyte reactivity, and depends
on the context, timing, and type of the injuring stimulus [71]. This complex response usually
causes the loss of the main astrocyte homeostatic functions and the gain in toxic properties
that may favor scar formation in some cases, the production of proinflammatory cytokines
and oxidative species in others, alter glutamate uptake and further impair neurotransmitter
synthesis, and reduce anaplerotic support to neurons as well as the defective interplay with
the rest of the neural cells. Due to the wide range of defects described in reactive astrocytes,
below we will discuss these alterations in relation to dopaminergic neuron damage.

Studies on PD animal models described an intense GFAP+ astrocyte reactivity in
both the striatum and the SNpc that parallels dopaminergic neuronal death and remains
upregulated even after the main wave of neuronal death has passed [32,72,73]. However,
reports on the number and appearance of GFAP+ astrocytes in the degenerating SN from
PD patients are conflicting. For instance, some studies described GFAP upregulation and
the presence of astrocytes with the typical reactive morphology in the SNpc of PD patients,
while others failed to find signs of astrocyte reactivity [24,74–77]. In any case, astrocytes in
the SNpc of PD brains present numerous alterations that can directly affect dopaminergic
neurons [30,32,78–84].

Recently, the use of GFAP as an astrocytic marker in the SNpc has been questioned,
raising the possibility that previous reports based on this protein expression have underes-
timated astrocyte reactivity in PD brains [85]. Other astrocytic markers, such as aquaporin
4 (AQP4) and S100 calcium-binding protein B (S100β), are gaining relevance in PD patho-
physiology. AQP4 is the predominant CNS aquaporin that maintains CNS water balance,
regulates astrocyte Ca++ signal transduction, and participates in the regulation of neuro-
transmission [86–89]. PD patients reportedly show lower AQP4 expression [89], and AQP4
deficiency increases the sensitivity of cultured dopaminergic neurons against MPTP/H2O2
damage, and correlates with cell death and caspase-3 activation [86]. In addition, AQP4
knockout mice were significantly more prone to MPTP-induced neurotoxicity [90], and
astrocyte and microglia activation in PD models decreased AQP4 expression [91]. In turn,
AQP4 deficiency leads to glial activation in other PD models, and increased inflamma-
tory factors, such as TNF-α and IL-1β, in the midbrain [72,92,93]. Furthermore, it has
been proposed that altered astrocytic Ca++ signals might cause AQP4 mislocalization and
functional deficiency, resulting in neuroinflammation [94]. In turn, alterations in AQP4
probably contribute to increase BBB permeability and alter free water levels in the SNpc of
PD patients [95,96].

Increasing evidence also shows the role of S100β+ astrocytes in PD. S100β is widely
expressed in astrocytes, in particular, striatal astrocytes, but not in dopaminergic neurons,
and is implicated in Ca++ homeostasis, energy metabolism, cell proliferation, and cytoskele-
tal regulation [29,97–99]. At nanomolar levels, S100β is neuroprotective, but at micromolar
concentrations it is deleterious to neurons, causing Ca++ overload, apoptosis, oxidative
damage, and excessive neuroinflammation associated with increased ROS production and
the release of proinflammatory cytokines [29,97]. S100β can be released to the extracellular
medium, and may act as a damage-associated molecular pattern protein through its interac-
tion with the receptor for advanced glycation end products (RAGE), a multiligand receptor
that is mainly expressed in neurons and microglia and mediates NFkB-mediated inflamma-
tory responses [29,97]. Both S100β and RAGE levels are increased in postmortem SN of PD
patients as well as in MPTP animal models of PD [79,80,99,100]. It also has been observed
that astrocytes from 6-hydroxydopamine-treated animals (a widely used PD model) in-
creased S100β secretion in vitro, and S100β increased levels in C6 rat glioma cells positively
correlated with the death of cocultured PC12 cells [101,102]. It also has been shown that
S100β can significantly contribute to neurodegeneration in S100β-overexpressed PD animal
models, and its ablation partially inhibited neurodegeneration [99]. S100β overexpression
in transgenic mice induced motor deficits similar to the PD phenotype by suppressing
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D2R expression, thus likely by affecting DA metabolism and promoting OS [103,104]. In
addition, sustained increased S100β levels that may activate RAGE-dependent pathways
may induce microglia activation and migration, amplifying neuroinflammation, oxidative
damage, and the disturbance of neurotransmitter metabolism, all mechanisms underlying
PD pathogenesis [29].

Astrocytic phagocytic processes appear to be altered in PD, likely affecting the effi-
cient clearance of misfolded α-syn, as suggested by abundant deposits of this protein in
astrocytes from PD patients and in inducible pluripotent stem cell (iPSC)-derived astro-
cytes from patients with mutations in LRRK2 [83,84,105–107]. Several reports show that
α-syn accumulation affects astrocytes in many ways, which include disrupted lysosomes,
glutamate transporters, mitochondria and BBB pathways, along with the increased release
of proinflammatory cytokines that will negatively affect neuronal survival [108–113]. In
fact, it was reported that astrocyte α-syn accumulation correlated with the neurodegenera-
tion of cocultured dopaminergic neurons, and the overexpression of α-syn in astrocytes
caused gliosis followed by neurodegeneration in rodents [31,68,84,109,110]. Therefore, the
inflammatory response in astrocytes elicited by α-syn seems strongly linked to neurodegen-
eration. In this sense, Toll-like receptors (TLR), in particular TLR4, have been proposed as a
connection between PD and neuroinflammation through the immune/neuroinflammatory
responses that precede motor and non-motor symptoms [114]. TLR4 is overexpressed in the
caudate putamen and in circulating monocytes of PD patients [115]. This receptor is highly
expressed in mature human microglial cells and astrocytes under basal conditions [116].
Furthermore, upon exposure to α-syn oligomers, both glial cells release significant amounts
of TNF-α in a TLR4-dependent manner [117]. This mechanism has been proposed as a me-
diator of the alterations caused by α-syn accumulation in the midbrain [114,117]. Moreover,
α-syn could bind TLR4-activating inflammatory cascades, which include those dependent
on NFkB, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinases with
the downstream overexpression of proinflammatory cytokines, iNOs and COX2, involved
in cell degeneration [114,118,119]. Astrocytes also express TLR3, the signaling of which also
may initiate the neuroinflammatory response [120]. In addition, activation of the dopamin-
ergic D3R, which is selectively expressed in dopaminergic neurons and astrocytes but not
in microglial cells, in the SN and ventral tegmental area in PD, occurs under inflammatory
conditions and sustains neuroinflammation, causing a positive feedback loop [64,121].

Excitotoxicity resulting from dysfunctional astrocytic glutamate transporters also ap-
pears to contribute to PD pathology [122]. For instance, a reduction in glutamate uptake and
in the expression of glutamate transporter-1 (GLT1) and glutamate/aspartate transporter
(GLAST) in the nigrostriatal pathway have been described in different PD rodent mod-
els [122–124]. Furthermore, studies conducted by Zhang et al. show that GLT1 deficiency in
the SNpc of mice induces motor deficits and dopaminergic neuronal death associated with
astroglia and microglia reactivity [122]. In this regard, it has been suggested that increased
D2R stimulation due to a surge of DA in the early PD stage may result in an aberrant
astrocytic Ca++ signal that will downregulate GLT1 expression, facilitating excitotoxic
damage [46,94]. In accordance, a nuclear magnetic resonance study in PD patients reported
increased glutamate levels in the putamen ipsilateral to the more affected hemibody [125].
Altered astrocytic glutamatergic metabolism will also compromise NH3 detoxification and
GSH synthesis, with the consequent affectation of metabolic and antioxidant support to
neurons [124].

In addition, neurovascular decoupling that impairs the upregulation of glucose trans-
porter 1 (GLUT1) and glycolysis in astrocytes, which under physiological conditions
reinforce the supply of activated neurons, has been described in some PD patients [126,127].
This impaired astrocyte response in PD may be partially explained by a limited func-
tional expression of GLUT1, which is recognized as the master controller of neuronal
glucose utilization, resulting in a decreased pool of energetic sources such as glycogen
available to neurons, thus providing a link between neurodegenerative disorders and
energy metabolism [37].
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Another astrocytic protein that has been associated with PD is MAOB, the levels of
which are significantly increased in the SNpc astrocytes in PD [128–130]. Increased MAOB
has been proposed to contribute to disease pathogenesis by an increased degradation of
DA and other substrates, which results in H2O2 overproduction and subsequent OS [17].
Recently, it has also been suggested that increased MAOB activity in astrocytes potentiate
the astrocytic synthesis and release of gamma aminobutyric acid (GABA) [128,129,131]. In-
creased extracellular GABA activates extrasynaptic GABAA receptors that inhibit the neigh-
boring dopaminergic neuronal activity, leading to a substantial decrease in TH with the con-
sequent deficiency of DA, which can lead to parkinsonian motor symptoms [128,131,132].
In accordance, MAOB inhibitors have protective effects on PD, preventing dopaminergic
neuron degeneration and decreasing parkinsonian symptoms, especially when applied to
early phase patients [133]. MAOB genetic ablation or silencing also alleviated parkinsonian
motor symptoms [128,129].

Astrocytes also possess a plethora of spontaneous Ca++ signals that regulate diverse
signaling pathways that could act in an autocrine manner to modulate nearby cells [134,135].
In addition, increased levels of Ca++ ER and altered mitochondrial functions are described
in PD patients, which, in turn, will worsen the redox status, thus impairing the antioxidant
support and lactate shuttle to neurons. In accordance, Ca++ channel blockers have been
proposed to treat PD [136].

Finally, enhanced hemichannel formation could increase astrocyte-derived deleterious
signaling to the extracellular medium in PD. In this sense, in the MPTP model, astrocytic
connexin-43 (Cx43) hemichannel permeability was increased and accompanied by elevated
intracellular Ca++ levels in midbrain slices, while the administration of a hemichannel
inhibitor avoided dopaminergic neuronal loss and inhibited microglial activation [137].
On the other hand, rotenone administration in vivo or in vitro increases Cx43 protein
level and phosphorylation in astrocytes [138]. Furthermore, α-syn enhances the opening
of Cx43 and Pannexin 1 hemichannels in mouse cortical astrocytes, resulting in altered
intracellular Ca++ dynamics, nitric oxide production, and gliotransmitter release, including
ATP [139]. Released ATP could act in a paracrine fashion by activating purine receptors on
adjacent astrocytes, increasing the ATP release and intracellular Ca++ mobilization through
a feed-forward mechanism that could alter glial cell communication further [25]. Therefore,
astrocytes in the SNpc of PD brains and in PD models present numerous alterations that
can directly or indirectly affect the survival of dopaminergic neurons.

5. Conclusions

Astrocytes participate in almost all CNS functions, and play significant roles in the
initiation and progression of neurodegenerative diseases, including PD. Here we review
the mounting evidence that supports a considerable interplay between astrocytes and
dopaminergic neurons, as well as the impact of astrocyte dysfunction on the survival
of these neurons, mostly in view of their specialized requirements and the low astro-
cytes/neuron ratio in the SN, which could imply more critical effects than in other parts of
the brain. Despite great strides in understanding how neurons and glial cells act together,
and how disease disrupts these interactions, there is still a long way to go to fully eluci-
date the non-neuronal cell autonomous mechanisms involved in PD; such information is
relevant when considering the assessment of novel therapeutics for this disease.
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